Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
J Appl Toxicol ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639436

ABSTRACT

Intracerebral hemorrhage (ICH), for which there are currently no effective preventive or treatment methods, has a very high fatality rate. Statins, such as atorvastatin (ATV), are the first-line drugs for regulating blood lipids and treating hyperlipidemia-related cardiovascular diseases. However, ATV-associated ICH has been reported, although its incidence is rare. In this study, we aimed to investigate the protective action and mechanisms of berberine (BBR) against ATV-induced brain hemorrhage. We established an ICH model in zebrafish induced by ATV (2 µM) and demonstrated the effects of BBR (10, 50, and 100 µM) on ICH via protecting the vascular network using hemocyte staining and three transgenic zebrafish. BBR was found to reduce brain inflammation and locomotion injury in ICH-zebrafish. Mechanism research showed that ATV increased the levels of VE-cadherin and occludin proteins but disturbed their localization at the cell membrane by abnormal phosphorylation, which decreased the number of intercellular junctions between vascular endothelial cells (VECs), disrupting the integrity of vascular walls. BBR reversed the effects of ATV by promoting autophagic degradation of phosphorylated VE-cadherin and occludin in ATV-induced VECs examined by co-immunoprecipitation (co-IP). These findings provide crucial insights into understanding the BBR mechanisms involved in the maintenance of vascular integrity and in mitigating adverse reactions to ATV.

2.
J Nat Prod ; 87(2): 228-237, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38266493

ABSTRACT

As a model liverwort, Marchantia polymorpha contains various flavone glucuronides with cardiovascular-promoting effects and anti-inflammatory properties. However, the related glucuronosyltransferases have not yet been reported. In this study, two bifunctional UDP-glucuronic acid/UDP-glucose:flavonoid glucuronosyltransferases/glucosyltransferases, MpUGT742A1 and MpUGT736B1, were identified from M. polymorpha. Extensive enzymatic assays found that MpUGT742A1 and MpUGT736B1 exhibited efficient glucuronidation activity for flavones, flavonols, and flavanones and showed promiscuous regioselectivity at positions 3, 6, 7, 3', and 4'. These enzymes catalyzed the production of a variety of flavonoid glucuronides with medicinal value, including apigenin-7-O-glucuronide and scutellarein-7-O-glucuronide. With the use of MpUGT736B1, apigenin-4'-O-glucuronide and apigenin-7,4'-di-O-glucuronide were prepared by scaled-up enzymatic catalysis and structurally identified by NMR spectroscopy. MpUGT742A1 also displayed glucosyltransferase activity on the 7-OH position of the flavanones using UDP-glucose as the sugar donor. Furthermore, we constructed four recombinant strains by combining the pathway for increasing the UDP-glucuronic acid supply with the two novel UGTs MpUGT742A1 and MpUGT736B1. When apigenin was used as a substrate, the extracellular apigenin-4'-O-glucuronide and apigenin-7,4'-di-O-glucuronide production obtained from the Escherichia coli strain BB2 reached 598 and 81 mg/L, respectively. Our study provides new candidate genes and strategies for the biosynthesis of flavonoid glucuronides.


Subject(s)
Flavanones , Marchantia , Flavonoids/chemistry , Apigenin , Glucuronides/metabolism , Marchantia/metabolism , Glucuronosyltransferase/chemistry , Glucuronosyltransferase/metabolism , Escherichia coli/metabolism , Glucose , Glucuronic Acid , Uridine Diphosphate
3.
PLoS One ; 19(1): e0296079, 2024.
Article in English | MEDLINE | ID: mdl-38190396

ABSTRACT

Phenylpropanoids play important roles in plant physiology and the enzyme 4-coumarate: coenzyme A ligase (4CL) catalyzes the formation of thioesters. Despite extensive characterization in various plants, the functions of 4CLs in the liverwort Marchantia paleacea remain unknown. Here, four 4CLs from M. paleacea were isolated and functionally analyzed. Heterologous expression in Escherichia coli indicated the presence of different enzymatic activities in the four enzymes. Mp4CL1 and Mp4CL2 were able to convert caffeic, p-coumaric, cinnamic, ferulic, dihydro-p-coumaric, and 5-hydroxyferulic acids to their corresponding CoA esters, while Mp4CL3 and Mp4CL4 catalyzed none. Mp4CL1 transcription was induced when M. paleacea thalli were treated with methyl jasmonate (MeJA). The overexpression of Mp4CL1 increased the levels of lignin in transgenic Arabidopsis. In addition, we reconstructed the flavanone biosynthetic pathway in E. coli. The pathway comprised Mp4CL1, co-expressed with chalcone synthase (CHS) from different plant species, and the efficiency of biosynthesis was optimal when both the 4CL and CHS were obtained from the same species M. paleacea.


Subject(s)
Arabidopsis , Flavanones , Marchantia , Ligases , Marchantia/genetics , Lignin , Escherichia coli/genetics , Cloning, Molecular
4.
Redox Biol ; 64: 102763, 2023 08.
Article in English | MEDLINE | ID: mdl-37354827

ABSTRACT

NADPH oxidases 2 (NOX2) is the main source of ROS in macrophages, which plays a critical role in the formation of atherosclerosis. However, effects of NOX2 inhibition on established vulnerable plaques and the potential role involved remain unclear. The purpose of this study is to investigate the latent mechanism of NOX2-triggered vulnerable plaque development. We generated a vulnerable carotid plaque model induced by carotid branch ligation and renal artery constriction, combined with a high-fat diet in ApoE-/- mice. NOX2 specific inhibitor, GSK2795039 (10 mg/kg/day by intragastric administration for 8 weeks) significantly prevented vulnerable plaque, evaluated by micro-ultrasound imaging parameters. A profile of less intraplaque hemorrhage detection, increased collagen-lipid ratio, fibrous cap thickness and less necrotic core formation were also found in GSK2795039 treated group. Mechanistically, reduced 4-HNE, in situ lesional apoptosis and enhanced efferocytosis were involved in mice treated with NOX2 inhibitor. Further analysis in mouse macrophages confirmed the role of NOX2 inhibition in enhancing macrophage efferocytosis by regulating the MertK/PI3K/AKT pathway. In summary, our data defined previously few recognized roles of NOX2 in vulnerable plaque pathogenesis and an undescribed NOX2-ROS-MerTK axis acts involved in regulating macrophage efferocytosis in the formation of rupture-prone vulnerable plaques.


Subject(s)
Plaque, Atherosclerotic , Proto-Oncogene Proteins c-akt , Mice , Animals , c-Mer Tyrosine Kinase/genetics , c-Mer Tyrosine Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Reactive Oxygen Species/metabolism , Plaque, Atherosclerotic/metabolism , Macrophages/metabolism , Apoptosis
5.
Zool Res ; 44(2): 323-330, 2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36799224

ABSTRACT

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent years not only caused a global pandemic but resulted in enormous social, economic, and health burdens worldwide. Despite considerable efforts to combat coronavirus disease 2019 (COVID-19), various SARS-CoV-2 variants have emerged, and their underlying mechanisms of pathogenicity remain largely unknown. Furthermore, effective therapeutic drugs are still under development. Thus, an ideal animal model is crucial for studying the pathogenesis of COVID-19 and for the preclinical evaluation of vaccines and antivirals against SARS-CoV-2 and variant infections. Currently, several animal models, including mice, hamsters, ferrets, and non-human primates (NHPs), have been established to study COVID-19. Among them, ferrets are naturally susceptible to SARS-CoV-2 infection and are considered suitable for COVID-19 study. Here, we summarize recent developments and application of SARS-CoV-2 ferret models in studies on pathogenesis, therapeutic agents, and vaccines, and provide a perspective on the role of these models in preventing COVID-19 spread.


Subject(s)
COVID-19 , Cricetinae , Animals , Mice , SARS-CoV-2 , COVID-19/veterinary , Ferrets , Peptidyl-Dipeptidase A
6.
New Phytol ; 237(2): 515-531, 2023 01.
Article in English | MEDLINE | ID: mdl-36062450

ABSTRACT

Unlike bibenzyls derived from the vascular plants, lunularic acid (LA), a key precursor for macrocyclic bisbibenzyl synthesis in nonvascular liverworts, exhibits the absence of one hydroxy group within the A ring. It was hypothesized that both polyketide reductase (PKR) and stilbenecarboxylate synthase 1 (STCS1) were involved in the LA biosynthesis, but the underlined mechanisms have not been clarified. This study used bioinformatics analysis with molecular, biochemical and physiological approaches to characterize STCS1s and PKRs involved in the biosynthesis of LA. The results indicated that MpSTCS1s from Marchantia polymorpha catalyzed both C2→C7 aldol-type and C6→C1 Claisen-type cyclization using dihydro-p-coumaroyl-coenzyme A (CoA) and malonyl-CoA as substrates to yield a C6-C2-C6 skeleton of dihydro-resveratrol following decarboxylation and the C6-C3-C6 type of phloretin in vitro. The protein-protein interaction of PKRs with STCS1 (PPI-PS) was revealed and proved essential for LA accumulation when transiently co-expressed in Nicotiana benthamiana. Moreover, replacement of the active domain of STCS1 with an 18-amino-acid fragment from the chalcone synthase led to the PPI-PS greatly decreasing and diminishing the formation of LA. The replacement also increased the chalcone formation in STCS1s. Our results highlight a previously unrecognized PPI in planta that is indispensable for the formation of LA.


Subject(s)
Marchantia , Salicylates , Coenzyme A/chemistry
7.
Microb Cell Fact ; 21(1): 210, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36242071

ABSTRACT

BACKGROUND: Flavonoid C-glycosides have many beneficial effects and are widely used in food and medicine. However, plants contain a limited number of flavonoid C-glycosides, and it is challenging to create these substances chemically. RESULTS: To screen more robust C-glycosyltransferases (CGTs) for the biosynthesis of flavonoid C-glycosides, one CGT enzyme from Stenoloma chusanum (ScCGT1) was characterized. Biochemical analyses revealed that ScCGT1 showed the C-glycosylation activity for phloretin, 2-hydroxynaringenin, and 2-hydroxyeriodictyol. Structure modeling and mutagenesis experiments indicated that the glycosylation of ScCGT1 may be initiated by the synergistic action of conserved residue His26 and Asp14. The P164T mutation increased C-glycosylation activity by forming a hydrogen bond with the sugar donor. Furthermore, when using phloretin as a substrate, the extracellular nothofagin production obtained from the Escherichia coli strain ScCGT1-P164T reached 38 mg/L, which was 2.3-fold higher than that of the wild-type strain. Finally, it is proved that the coupling catalysis of CjFNS I/F2H and ScCGT1-P164T could convert naringenin into vitexin and isovitexin. CONCLUSION: This is the first time that C-glycosyltransferase has been characterized from fern species and provides a candidate gene and strategy for the efficient production of bioactive C-glycosides using enzyme catalysis and metabolic engineering.


Subject(s)
Ferns , Glycosyltransferases , Escherichia coli/metabolism , Ferns/metabolism , Flavonoids/metabolism , Glycosides , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Phloretin , Sugars
8.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2634-2642, 2022 May.
Article in Chinese | MEDLINE | ID: mdl-35718481

ABSTRACT

On the basis of previous studies, this study prepared and evaluated microemulsion gel loading enriched ingredients of Epimedii Folium and investigated its protective effect against peripheral nervous system damage caused by chemotherapeutics. The preparation method and the type and dosage of the matrix were investigated from rheology, preparation difficulty, and drug loading. Then the optimal prescription was determined and the microemulsion gel loading enriched ingredients of Epimedii Folium was prepared. The in vitro release and transdermal behaviors of the gel were investigated in the Franz diffusion cell with epimedin A1,A,B,C, and icariin as evaluation indicators. The oxaliplatin-induced peripheral neuropathy(OIPN) model was established in Wistar rats. The protective effect of the microemulsion gel loading enriched ingredients of Epimedii Folium against peripheral nervous system damage caused by chemotherapeutics was evaluated by behavioral measurement after drug administration and histopathological examination of dorsal root ganglia and sciatic nerve. The preparation process of the microemulsion gel loading enriched ingredients of Epimedii Folium was stable, and the release of the five components was consistent with the Hixson-Crowell cube root law. Behavioral indicators intuitively showed that the drug could effectively relieve mechanical allodynia caused by oxaliplatin. The histopathological examination showed that the drug can improve neuron damage in the dorsal root ganglia, axon degeneration, and demyelination caused by oxaliplatin. Therefore, the preparation process of the microemulsion gel loading enriched ingredients of Epimedii Folium is feasible, which can achieve stable drug release. It has a certain therapeutic effect on chemotherapy-induced peripheral neuropathy(CIPN).


Subject(s)
Drugs, Chinese Herbal , Peripheral Nervous System Diseases , Animals , Drugs, Chinese Herbal/therapeutic use , Oxaliplatin/adverse effects , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , Rats , Rats, Wistar
9.
Antioxidants (Basel) ; 11(4)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35453420

ABSTRACT

Liverworts are rich in bibenzyls and related O-glycosides, which show antioxidant activity. However, glycosyltransferases that catalyze the glycosylation of bibenzyls have not yet been characterized. Here, we identified two bibenzyl UDP-glucosyltransferases named MpUGT737B1 and MpUGT741A1 from the model liverwort Marchantia polymorpha. The in vitro enzymatic assay revealed that MpUGT741A1 specifically accepted the bibenzyl lunularin as substrate. MpUGT737B1 could accept bibenzyls, dihydrochalcone and phenylpropanoids as substrates, and could convert phloretin to phloretin-4-O-glucoside and phloridzin, which showed inhibitory activity against tyrosinase and antioxidant activity. The results of sugar donor selectivity showed that MpUGT737B1 and MpUGT741A1 could only accept UDP-glucose as a substrate. The expression levels of these MpUGTs were considerably increased after UV irradiation, which generally caused oxidative damage. This result indicates that MpUGT737B1 and MpUGT741A1 may play a role in plant stress adaption. Subcellular localization indicates that MpUGT737B1 and MpUGT741A1 were expressed in the cytoplasm and nucleus. These enzymes should provide candidate genes for the synthesis of bioactive bibenzyl O-glucosides and the improvement of plant antioxidant capacity.

10.
Cardiovasc Drugs Ther ; 36(5): 805-815, 2022 10.
Article in English | MEDLINE | ID: mdl-34152510

ABSTRACT

PURPOSE: It has been established that obstructive sleep apnea (OSA) is an independent risk factor for atherosclerosis. Chronic intermittent hypoxia (CIH) activates sympathoadrenal system and upregulates ß3 adrenergic receptor (ß3 AR). However, the effect of selective ß3 AR agonist mirabegron in CIH-induced atherosclerosis remains unknown. METHODS: We generated a CIH-induced atherosclerosis model through exposing ApoE-/- mice to CIH (8 h per day, cyclic inspiratory oxygen fraction 5-21%, 60-s cycle) for 6 weeks after 4-week high-fat dieting and investigated the effects of mirabegron, a selective ß3 AR agonist, on CIH-induced atherosclerosis. The coronary endarterectomy (CE) specimens from coronary artery disease patients with OSA and without OSA were collected. RESULTS: The expression of ß3 AR was significantly elevated in CIH-induced atherosclerosis model. Furthermore, treatment with mirabegron (10mg/kg per day by oral administration for 6 weeks) ameliorated atherosclerosis in ApoE-/- mice in CIH but not in normoxia. Mechanistically, mirabegron activated ß3 AR and ameliorated intraplaque oxidative stress by suppressing p22phox expression and reactive oxygen species (ROS) level. In addition, in human CE specimens, ß3 AR was also upregulated associated with increased p22phox expression and ROS level both in the lumen and in the plaque of coronary artery in OSA subjects. CONCLUSION: This study first demonstrated that mirabegron impeded the progression of CIH-induced atherosclerosis, at least in part, via ß3 AR-mediated oxidative stress, suggesting a promising therapeutic strategy for protecting against atherosclerosis induced by CIH.


Subject(s)
Atherosclerosis , Sleep Apnea, Obstructive , Acetanilides , Animals , Apolipoproteins E , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Disease Models, Animal , Humans , Hypoxia , Mice , Oxygen , Reactive Oxygen Species/metabolism , Receptors, Adrenergic , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/drug therapy , Thiazoles
11.
Front Cardiovasc Med ; 8: 751519, 2021.
Article in English | MEDLINE | ID: mdl-34765657

ABSTRACT

Background: Obstructive sleep apnea is an atherogenesis factor of which chronic intermittent hypoxia is a prominent feature. Chronic intermittent hypoxia (CIH) exposure can sufficiently activate the sympathetic system, which acts on the ß3 adrenergic receptors of brown adipose tissue (BAT). However, the activity of BAT and its function in CIH-induced atherosclerosis have not been fully elucidated. Methods: This study involved ApoE-/- mice which were fed with a high-fat diet for 12 weeks and grouped into control and CIH group. During the last 8 weeks, mice in the CIH group were housed in cages to deliver CIH (12 h per day, cyclic inspiratory oxygen fraction 5-20.9%, 180 s cycle). Atherosclerotic plaques were evaluated by Oil Red O, hematoxylin and eosin, Masson staining, and immunohistochemistry. Afterward, we conducted immunohistochemistry, western blotting, and qRT-PCR of uncoupling protein 1 (UCP1) to investigate the activation of BAT. The level of serum total cholesterol (TC), triglyceride, low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), and free fatty acid (FFA) were measured. Finally, RNA-Sequencing was deployed to explore the differentially expressed genes (DEGs) and their enriched pathways between control and CIH groups. Results: Chronic intermittent hypoxia exposure promoted atherosclerotic plaque area with increasing CD68, α-SMA, and collagen in plaques. BAT activation was presented during CIH exposure with UCP1 up-regulated. Serum TC, triglyceride, LDL-c, and FFA were increased accompanied by BAT activation. HDL-c was decreased. Mechanistically, 43 lipolysis and lipid metabolism-associated mRNA showed different expression profiling between the groups. Calcium, MAPK, and adrenergic signaling pathway included the most gene number among the significantly enriched pathways. Conclusion: This study first demonstrated that BAT activation is involved in the progression of CIH-induced atherosclerosis, possibly by stimulating lipolysis.

13.
Planta ; 252(5): 75, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33026530

ABSTRACT

MAIN CONCLUSION: Exogenous SA treatment at appropriate concentrations promotes adventitious root formation in cucumber hypocotyls, via competitive inhibiting the IAA-Asp synthetase activity of CsGH3.5, and increasing the local free IAA level. Adventitious root formation is critical for the cutting propagation of horticultural plants. Indole-3-acetic acid (IAA) has been shown to play a central role in regulating this process, while for salicylic acid (SA), its exact effects and regulatory mechanism have not been elucidated. In this study, we showed that exogenous SA treatment at the concentrations of both 50 and 100 µM promoted adventitious root formation at the base of the hypocotyl of cucumber seedlings. At these concentrations, SA could induce the expression of CYCLIN and Cyclin-dependent Kinase (CDK) genes during adventitious rooting. IAA was shown to be involved in SA-induced adventitious root formation in cucumber hypocotyls. Exposure to exogenous SA led to a slight increase in the free IAA content, and pre-treatment with the auxin transport inhibitor 1-naphthylphthalamic acid (NPA) almost completely abolished the inducible effects of SA on adventitious root number. SA-induced IAA accumulation was also associated with the enhanced expression of Gretchen Hagen3.5 (CsGH3.5). The in vitro enzymatic assay indicated that CsGH3.5 has both IAA- and SA-amido synthetase activity and prefers aspartate (Asp) as the amino acid conjugate. The Asp concentration dictated the functional activity of CsGH3.5 on IAA. Both affinity and catalytic efficiency (Kcat/Km) increased when the Asp concentration increased from 0.3 to 1 mM. In contrast, CsGH3.5 showed equal catalytic efficiency for SA at low and high Asp concentrations. Furthermore, SA functioned as a competitive inhibitor of the IAA-Asp synthetase activity of CsGH3.5. During adventitious formation, SA application indeed repressed the IAA-Asp levels in the rooting zone. These data show that SA plays an inducible role in adventitious root formation in cucumber through competitive inhibition of the auxin conjugation enzyme CsGH3.5. SA reduces the IAA conjugate levels, thereby increasing the local free IAA level and ultimately enhancing adventitious root formation.


Subject(s)
Cucumis sativus , Hypocotyl , Salicylic Acid , Cucumis sativus/enzymology , Cucumis sativus/growth & development , Enzyme Activation/drug effects , Gene Expression Regulation, Plant , Hypocotyl/enzymology , Hypocotyl/growth & development , Ligases/metabolism , Plant Roots/drug effects , Plant Roots/enzymology , Salicylic Acid/pharmacology
14.
Fertil Steril ; 113(4): 853-864, 2020 04.
Article in English | MEDLINE | ID: mdl-32228881

ABSTRACT

OBJECTIVE: To determine whether the incidence of chromosomal abnormalities in blastocysts is higher in patients with idiopathic recurrent pregnancy loss (iRPL) who underwent preimplantation genetic testing for aneuploidy (PGT-A) than in those who underwent preimplantation genetic testing for monogenic defects (PGT-M). DESIGN: Retrospective cohort study. SETTING: University-affiliated reproductive center. PATIENT(S): A total of 62 patients with iRPL underwent 101 PGT-A cycles (iRPL group), and 212 patients underwent 311 PGT-M cycles (control group). INTERVENTIONS(S): Blastocyst biopsy and comprehensive chromosome screening technologies, including single-nucleotide polymorphism microarrays and next-generation sequencing. MAIN OUTCOME MEASURE(S): Incidence of chromosomal abnormalities in blastocysts and clinical miscarriage (CM) rate. RESULT(S): Stratification analysis by maternal age showed an increased incidence of chromosomal abnormalities in the iRPL group aged ≤35 years (48.9% vs. 36.9%), whereas no significant increase was found in the iRPL group aged >35 years (66.9% vs. 61.4%). After transfer of euploid embryos, women aged ≤35 years with iRPL exhibited an increased CM rate compared with the control group (26.1% vs. 3.1%). CONCLUSION(S): Young patients with iRPL have a significantly higher rate of chromosomal abnormalities in blastocysts compared with patients with no or sporadic CM. Although euploid embryos were transferred after PGT-A, young patients with iRPL had a higher CM rate, which may indicate that chromosomal abnormalities might not be the only causal factor for iRPL. Therefore, the role of PGT-A in iRPL still needs to be clarified.


Subject(s)
Abortion, Habitual/genetics , Aneuploidy , Blastocyst/physiology , Chromosome Aberrations/embryology , Preimplantation Diagnosis/methods , Abortion, Habitual/diagnosis , Adult , Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Cohort Studies , Female , Genetic Testing/methods , Humans , Pregnancy , Retrospective Studies
15.
Inflamm Res ; 69(6): 559-568, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32221619

ABSTRACT

BACKGROUND: Long non-coding RNA (lncRNA) cancer susceptibility candidate 9 (CASC9) is reported to be linked to cancers. This research aims to explore the role and possible mechanism of CASC9 in lung injury induced by sepsis. METHODS: Lipopolysaccharide (LPS) induced human small airway epithelial cells (HSAECs) were established in vitro to mimic sepsis-induced lung injury. The effects of CASC9 and miR-195-5p on HSAECs viability were studied by CCK-8 assay. Interactions between CASC9 and miR-195-5p were determined by bioinformatics analysis, RT-PCR, dual luciferase reporter assay, and RNA immunoprecipitation assay. Pyruvate dehydrogenase kinase 4 (PDK4) and apoptosis-related molecules including Bcl2 and Bad were detected by western blot. Additionally, sepsis-induced lung injury model in rats was established by intraperitoneal injection of LPS in vivo to validate the demonstrations of in vitro studies. RESULTS: CASC9 was markedly down-regulated while miR-195-5p was significantly up-regulated in HSAECs treated by LPS and lung tissues of rats with sepsis. CASC9 interacted with miR-195-5p, and negatively regulated its expression level. Overexpression of CASC9 or transfection of miR-195-5p inhibitors significantly promoted the viability of HSAECs. The transfection of miR-195-5p mimics effected oppositely. For mechanism, miR-195-5p targeted the 3'UTR of pyruvate dehydrogenase kinase 4 (PDK4) gene and depressed the protein level, and PDK4 was regulated indirectly by CASC9. Restoration of CASC9 in the lung tissues of rats with sepsis ameliorated lung injury. CONCLUSION: CASC9 protects lung epithelial cells from sepsis-induced injury via regulating miR-195-5p/PDK4 axis.


Subject(s)
Acute Lung Injury/genetics , MicroRNAs/genetics , Protein Kinases/genetics , RNA, Long Noncoding/genetics , Sepsis/genetics , Acute Lung Injury/etiology , Animals , Cells, Cultured , Down-Regulation , Epithelial Cells/metabolism , Humans , Lipopolysaccharides/pharmacology , Lung/cytology , Male , Rats, Sprague-Dawley , Sepsis/complications , Up-Regulation
16.
Zhongguo Zhong Yao Za Zhi ; 44(21): 4627-4633, 2019 Nov.
Article in Chinese | MEDLINE | ID: mdl-31872657

ABSTRACT

This study aimed to investigate the transdermal enhancing effect of essential oil from Zanthoxylum bungeanum(Z. bungeanum oil) in microemulsion gel(ZO-ME-gel) on permeation of different components,and reveal the transdermal enhancing mechanism of ZO-ME-gel. A series of components with different log P values were selected as model drugs and encapsulated in ZO-ME-gel to simplify and characterize the complex components of traditional Chinese medicine. The transdermal behavior of the model drugs was further examined using the improved Franz diffusion cell method. Then attenuated total reflection Fourier transform infrared spectroscopy(ATR-FTIR),differential scanning calorimetry(DSC) studies and hematoxylin-eosin(HE) staining were used to investigate the effects of Z. bungeanum oil and ZO-ME-gel on keratin,intercellular lipids and microstructure of the stratum corneum(SC). The results showed that Z. bungeanum oil and ZO-ME-gel had a good transdermal enhancing effect on both hydrophilic and lipophilic drugs,and the best effect was achieved when log P value was-0. 5. The transdermal enhancing mechanism of Z. bungeanum oil and ZO-ME-gel was related to affecting the order of the SC lipids,changing lipid fluidity and protein conformation,and disrupting the integrity of the SC structure. 5% Z. bungeanum oil had greater transdermal enhancing effect and destruction of SC structure than ZO-ME-gel. These results suggested that Z. bungeanum oil loaded in microemulsion gel still had a good transdermal enhancing effect although the effect was not as great as Z. bungeanum oil itself,in addition,ZO-ME-gel was less irritating to the skin and safer to use,which had a guiding role in the development and clinical application of Z. bungeanum oil-containing traditional Chinese medicine topical preparations.


Subject(s)
Oils, Volatile , Zanthoxylum , Administration, Cutaneous , Skin , Skin Absorption
17.
Zhongguo Zhong Yao Za Zhi ; 44(1): 193-198, 2019 Jan.
Article in Chinese | MEDLINE | ID: mdl-30868832

ABSTRACT

To explore the regularity of traditional Chinese medicine(TCM) prescriptions for cardio-cerebrovascular diseases,the core drug groups with common therapeutic effects on cerebrovascular diseases represented by stroke and cardiovascular diseases represented by coronary artery disease were extracted,and their consistency and difference in the treatment of different diseases were analyzed.A total of 388 Chinese patent medicines were collected for the treatment of cerebrovascular diseases,cardiovascular diseases and cardio-cerebrovascular diseases.The dominant and recessive patterns of Chinese patent medicines in clinical use were found by "frequency analysis","compatibility analysis" and "network analysis" respectively.According to the findings of the three parts,Salviae Miltiorrhizae Radix et Rhizoma,Chuanxiong Rhizoma,Carthami Flos and Astragali Radix have a high frequency of use in the treatment of brain disease,heart disease and both,with frequent combined medication.Data mining confirmed the core drug combinations for the treatment of cerebral and cardiac vascular diseases,so as to reveal the similarities and differences in the drug use of Chinese medicine for these diseases,and provide a basis for the rational use of traditional Chinese medicine in clinical practice.This analysis also defines a new direction for the future development of prescription combinations for different indications of cerebral and cardiac diseases.


Subject(s)
Cardiovascular Diseases/drug therapy , Cerebrovascular Disorders/drug therapy , Drugs, Chinese Herbal/therapeutic use , Data Mining , Humans , Medicine, Chinese Traditional , Prescriptions
18.
Artif Cells Nanomed Biotechnol ; 46(sup3): S585-S597, 2018.
Article in English | MEDLINE | ID: mdl-30306802

ABSTRACT

Co-encapsulation of drugs provides a convenient means for treating different symptoms of a disease. Celastrol (Cel) shows potent anti-arthritic activity and Indomethacin (Indo) is effective in relieving inflammatory pain. Nanostructured lipid carriers loaded with Celastrol and Indomethacin (Cel-Indo-NLCs) were prepared by emulsification evaporation-solidification method, optimized by the Box-Behnken design and characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and powder X-ray diffraction analysis (PXRD). Visualization of transdermal translocation of Cel-Indo-NLCs was achieved by confocal laser scanning microscope (CLSM). Further, Cel-Indo-NLCs were incorporated into Carbopol 940 for transdermal delivery. The in vitro studies were evaluated by using the Franz diffusion cells. Cel-Indo-NLCs depicted small particle size (26.92 ± 0.62 nm) and PDI (0.201 ± 0.01), high entrapment efficiency (96.56 ± 1.41%) and drug load (3.65 ± 0.05%). Moreover, Cel-Indo-NLCs showed prominent effect of decreasing paw oedema, inhibiting inflammation and pain by regulating the levels of IL-1ß, TNF-α, ß-endorphin and Substance P. After the administration of Cel-Indo-NLCs-gel, no skin irritation was observed in rats. There was no difference of gastrointestinal tract between different groups of rats when they were sacrificed. The histological analysis showed no renal and reproductive toxicity. Therefore, it can be concluded that co-encapsulation strategy based NLCs have the potential to provide safe transdermal delivery and are promising in treatment of pain and inflammation associated with rheumatoid arthritis.


Subject(s)
Arthritis, Rheumatoid , Drug Carriers , Indomethacin , Skin Absorption , Triterpenes , Administration, Cutaneous , Animals , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Drug Liberation , Indomethacin/chemistry , Indomethacin/pharmacokinetics , Indomethacin/pharmacology , Interleukin-1beta/metabolism , Pentacyclic Triterpenes , Rats , Rats, Sprague-Dawley , Substance P/metabolism , Triterpenes/chemistry , Triterpenes/pharmacokinetics , Triterpenes/pharmacology , Tumor Necrosis Factor-alpha/metabolism , beta-Endorphin/metabolism
19.
Molecules ; 23(7)2018 07 04.
Article in English | MEDLINE | ID: mdl-29973530

ABSTRACT

Alkenal double bond reductases (DBRs), capable of catalyzing the NADPH-dependent reduction of the α,ß-unsaturated double bond, play key roles in the detoxication of alkenal carbonyls. Here, the isolation and characterization of two DBRs encoded by the liverwort species Marchantia paleacea are described. The two DBRs share a relatively low similarity, and phylogenetic analysis indicated that MpMDBRL is more closely related to microbial DBRs than to other plant DBRs, while MpDBR shares common ancestry with typical plant DBRs. Both DBR proteins exhibited hydrogenation ability towards hydroxycinnamyl aldehydes; however, their temperature optimums were strikingly different. MpMDBRL demonstrated slightly weaker catalytic efficiency compared to MpDBR, and the structural models of their active binding sites to the substrate may provide a parsimonious explanation. Furthermore, both DBRs significantly responded to phytohormone treatment. In conclusion, M. paleacea produces two distinct types of functional DBRs, both of which participate in the protection against environmental stress in liverwort. The presence of a microbial type of DBR in a plant is herein reported for the first time.


Subject(s)
Marchantia/enzymology , Oxidoreductases/genetics , Oxidoreductases/metabolism , Catalytic Domain , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Plant/drug effects , Hydrogenation , Marchantia/chemistry , Marchantia/genetics , Models, Molecular , Oxidoreductases/chemistry , Phylogeny , Plant Growth Regulators/pharmacology , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism
20.
Plant Cell Physiol ; 59(6): 1187-1199, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29528434

ABSTRACT

Liverworts, a section of the bryophyte plants which pioneered the colonization of terrestrial habitats, produce cyclic bisbibenzyls as secondary metabolites. These compounds are generated via the phenylpropanoid pathway, similar to flavonoid biosynthesis, for which basic helix-loop-helix (bHLH) transcription factors have been identified as one of the important regulators in higher plants. Here, a bHLH gene homolog (PabHLH) was isolated from the liverwort species Plagiochasma appendiculatum and its contribution to bisbibenzyl biosynthesis was explored. Variation in the abundance of PabHLH transcript mirrored that of tissue bisbibenzyl content in three different liverwort tissues. A phylogenetic analysis based on the bHLH domain sequence suggested that the gene encodes a member of bHLH subgroup IIIf, which clusters proteins involved in flavonoid synthesis. The gene's transient expression in onion epidermal cells implied that its product localized to the nucleus, and a transactivation assays in yeast showed that it was able to activate transcription. In both callus and thallus, the overexpression of PabHLH boosted bisbibenzyl accumulation, while also up-regulating PaPAL, Pa4CL1, PaSTCS1 and two genes encoding P450 cytochromes, and its RNA interference (RNAi)-induced suppression down-regulated the same set of genes and reduced the accumulation of bisbibenzyls. The abundance of PaCHS and PaFNSI transcript was related to flavonoid accumulation in transgenic thallus. PabHLH represents a candidate for the metabolic engineering of bisbibenzyl content.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Bibenzyls/metabolism , Gene Expression Regulation, Plant , Hepatophyta/genetics , Amino Acid Sequence , Basic Helix-Loop-Helix Transcription Factors/genetics , Bibenzyls/chemistry , Biosynthetic Pathways , Genes, Reporter , Hepatophyta/cytology , Hepatophyta/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Recombinant Fusion Proteins , Sequence Alignment , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...